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Abstract
The magnetic anisotropy parameters in [110] MBE-grown films of REFe2 (RE,
rare earth) compounds are not the same as those in the bulk. This is due to
the presence of a shear strain εxy , frozen-in during crystal growth. In this
paper, magnetic anisotropy parameters for [110] MBE-grown REFe2 films, that
directly involve the shear strain εxy , are presented and discussed. In addition to
the usual first-order Callen and Callen term K̃ ′

2, there are nine second-order
terms, six of which involve cross-terms between εxy and the cubic crystal
field terms B4 and B6. Two of the second-order cross-terms are identified as
being important: K̃ ′′

242(T ) and K̃ ′′
264(T ). Of these, the rank-two term K̃ ′′

242(T )

dominates over a large temperature range. It has the same angular dependence
as the first-order term K̃ ′

2, but with a more rapid temperature dependence. The
correction at T = 0 K for TbFe2, DyFe2, HoFe2, ErFe2 and TmFe2, amounts
to ∼+9.2%, −13.9%, −11.6%, +14.3%, and 27.1%, respectively. Similar
comments are made concerning the rank-four K̃ ′′

264(T ) term.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Because of their numerous applications in magnetostriction, the REFe2 (RE, rare earth)
intermetallic compounds have a secure place in the annals of magnetism (Clark 1979, Engdahl
1999). Recently, interest in these compounds has been revived because of possible applications
in the field of nano-magnetism. Specifically, epitaxial single crystal films of the REFe2

compounds (∼400 nm) have been grown by molecular beam epitaxy (MBE) on sapphire
substrates (Oderno et al 1996). These films exhibit a wide range of phenomena, from model
magnetic exchange springs (Sawicki et al 2000a, 2000b, Dumesnil et al 2000) to giant
magnetoresistance (Gordeev et al 2001).
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Concomitantly, there has been renewed interest in the values of the magnetic anisotropy
parameters, as input parameters for magnetic modelling of the epitaxial films (Mougin et al
2000, Bowden et al 2003). Long ago, estimates for the bulk REFe2 compounds were given
by Atzmony and Dariel (1976), who showed that in addition to the phenomenological K1

and K2 parameters for cubic symmetry, it is necessary to include a higher-order term K3. In
addition, these authors found that some of the calculated K1 and K2 parameters changed sign
as a function of temperature, a feature which could not be explained in the context of the Callen
and Callen model (Callen and Callen 1965, 1966, Callen and Shtrikman 1965). This problem
has recently been re-visited by Martin et al (2006), using an extended version of the Callen
and Callen model. They were able to provide (i) an explanation for the change in sign of K1

in HoFe2 and K2 in DyFe2 and (ii) elucidate the origins of the K3, and higher-order terms.
In particular, explicit expressions for K1–K5 were given in terms of the RE-ion crystal field
parameters B4 and B6 and their products B2

4 , B4 B6 and B2
6 . The latter cross-terms dominate

the higher-order K3–K5 parameters, with K3 and K4 being of the same order of magnitude as
K1 and K2.

However, there are important difference between MBE-grown films and their free-standing
equivalents. Mougin et al (2000) have shown that MBE-grown films exhibit a strain term,
frozen-in during crystal growth. This term, which has the same form as the magneto-elastic
Hamiltonian, is usually written:

HME(εxy) = b2εxyαxαy . (1)

Here b2 is the temperature dependent magneto-elastic constant, εxy is the shear strain
(∼−0.55%) and αx and αy are the direction cosines with respect to the [100] and [010] cubic
axes, respectively. In the past, it has been assumed that both the strain term and the anisotropy
parameters K1–K2 are simply additive (Mougin et al 2000). However, given that cross-terms
of the form B2

4 , B4 B6 and B2
6 are important in the bulk, it is possible that cross-terms of the

form (b2εxy)
2, b2εxy B4 and b2εxy B6 are important in their strained equivalents. Indeed, the

latter may play a role in determining the direction of easy magnetization. These questions are
addressed in this paper.

2. Theory: magneto-crystalline magnetic anisotropy

A more complete description of the basic theory used in this paper has already been given by
Martin et al (2006). However, for convenience, an abbreviated account is set out below.

In the free-standing REFe2 inter-metallic compounds, the dominant anisotropy derives
from the crystal field interaction at the RE ion, with the exceptions of Gd and Y. The
Hamiltonian at the RE ion can be written:

H = HEx + HCF (2)

where (i)

HEx = 2(g j − 1)µB H Fe
EXJZ = XJZ (3)

and (ii)

HCF = B4[O40 + 5OC
44] + B6[O60 − 215OC

64]. (4)

(Cohen 1964, Bowden et al 1968, Atzmony and Dariel 1973, 1976). Here the exchange field
at the RE site H Fe

EX is assumed to be isotropic, and to follow the temperature dependence of the
Fe sub-lattice. At T = 0 K, µB H Fe

EX/k = 100 K (Atzmony and Dariel 1976).
For the purposes of this paper we choose not to use the operator equivalents O40, OC

44
etc, (e.g. Abragam and Bleaney 1970, Hutchings 1964) but rather the set of tensor operators
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Tn
q given by Buckmaster et al (1972), Bowden and Hutchison (1986). The latter have clear

advantages. First, it is possible to construct the entire tensor set starting from the basic building
blocks T1

0, T1
−1, T1

+1. Second, the operators can be recast in terms of unit irreducible tensor

operators T̂n
q where Tr[T̂n

q(T̂
n′
q ′)∗] = δnn′δqq ′ . Third, formulae exist for recasting products of

tensor operators T̂n
qT̂n′

q ′ into single tensors T̂N
Q where N � n + n′ (Bowden and Hutchison

1986). Fourth, they obey well-known rotation laws (Edmonds 1957). Since tensor operator
products arise in second-order perturbation theory (see below), they are the natural choice for
the problem in hand. Within the Buckmaster formulation therefore, the crystal field takes the
form:

HCF = B̃4

[
T4

0 +
√

5
14 (T

4
4 + T4

−4)
]

+ B̃6

[
T6

0 −
√

7
2 (T6

4 + T6
−4)

]
(5)

where

B̃4 = 2
√

70B4 and B̃6 = 4
√

231B6. (6)

In the Callen and Callen model of magnetic anisotropy, and its extensions, the crystal field
Hamiltonian HCF is assumed to be small compared to the magnetic exchange HEx. So the free
energy of RE ion can be expanded in the form:

F = F0 + F ′ + F ′′ + · · · (7)

where F0 = FEX is the free energy associated with the ‘dominant’ Fe–Fe magnetic exchange
term, and F ′ = 〈HCF〉 etc, where the expectation values are calculated using the Zeeman
eigenvalues and functions of the magnetic exchange Hamiltonian HEx. Here the use of a single
(double) dash on any symbol signifies that it originates from first (second)-order perturbation
theory, respectively.

In first order, for an arbitrary direction, we find:

F ′ = 〈HCF〉 =
∑
n,m

B̃n
m Dn

0m(ω)
〈
Tn

0

〉
(8)

where (i) the Dn
0n(ω) are the well-known rotation operators (Edmonds 1957) and (ii) ω is a

shorthand notation for the Euler angles (α, β, γ ). For the bulk REFe2 compounds therefore:

F ′ = K̃ ′
4(T )

[
Y 0

4 (θ, φ) +
√

5
14 (Y

4
4 (θ, φ) + Y −4

4 (θ, φ))

]
+ K̃ ′

6(T )

[
Y 0

6 (θ, φ)

−
√

7
2 (Y 4

6 (θ, φ) + Y −4
6 (θ, φ))

]
(9)

where (i) we have set (β, γ ) equal to (θ, φ), respectively, and (ii) the anisotropy constants are
given by:

K̃ ′
4(T ) =

√
4π

9
B̃4

0 〈T4
0〉

K̃ ′
6(T ) =

√
4π

13
B̃6

0 〈T6
0〉.

(10)

Equations (9) and (10) are the principal results of the Callen and Callen model of
anisotropy (Callen and Callen 1965, 1966) for cubic compounds. In practice, the anisotropy
parameters K̃ ′

4(T ), K̃ ′
6(T ) decrease monotonically with increasing temperature, and do not

change sign.
In second order (Bowden 1977, Martin et al 2006), we obtain:

F ′′ = − 1
2β

{∑
n,m

∑
n′,m′

B̃n
m B̃n′

m

∑
N,M

(2N + 1)

(
n n′ N
m m ′ M

)
DN

0M(ω)∗

×
∑

q

(
n n′ N
q −q 0

)
〈Tn

q

...Tn′
−q〉

}
(11)
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where (i) 〈Tn
q

...Tn′
q ′ 〉 is a shorthand notation for:

〈Tn
q

...Tn′
q ′ 〉 =

〈
Tn

q

∫
Tn′

q

〉
− 〈Tn

q〉〈Tn′
q ′ 〉

= Tr

[
Tn

q

∫ 1

0
dsρ1−sTn′

q ′ρ
s

]
− 〈Tn

q〉〈Tn′
q ′ 〉. (12)

(ii) β = 1/kT and (iii) ρ is the density matrix, calculated using the magnetic exchange
Hamiltonian alone. In practice, it is advantageous to recast equation (11) in the form:

F ′′ = − 1
2β

{∑
n,m

∑
n′,m′

B̃n
m B̃n′

m

∑
N,M

(2N + 1)

(
n n′ N
m m ′ M

)
DN

0M(ω)∗αnn′ N (T )

}
(13)

where the temperature dependent αn,n′,N (T ) coefficients are given by:

αnn′ N (T ) =
∑

q

(
n n′ N
q −q 0

)
〈Tn

q

...Tn′
−q〉. (14)

Note that the behaviour of the second-order terms as a function of temperature is governed
by two terms; the αnn′ N (T ) coefficients together with the global β = 1/kT term appearing
outside all of the terms in equation (13). In practice, the βαnn′ N (T ) coefficients converge to
zero as T → ∞, and to finite values as T → 0 K. More details concerning the properties of
αnn′ N (T ) etc, can be found in appendix A of Martin et al (2006).

From equation (13) it is clear that second-order perturbation theory will lead to terms
which are proportional to (B̃4)

2, (B̃6)
2 and cross-termsB̃4 B̃6. In particular, the (B̃4)

2, B̃4 B̃6

and (B̃6)
2 terms give rise to spherical harmonics with rank �8, �10 and �12, respectively. To

illustrate the terminology used in this paper, consider the second-order term involving (B̃4)
2.

We obtain:

F ′′(4, 4) = K̃ ′′
440(T )Y 0

0 (θ, φ) + K̃ ′′
444(T )Y C

4 (θ, φ) + K̃ ′′
446(T )Y C

6 (θ, φ) + K̃ ′′
448(T )Y C

8 (θ, φ)

(15)

where (i) the combinations of spherical harmonics Y C
N (θ, φ) with cubic symmetry are listed in

table 3 of Martin et al (2006) and (ii) the anisotropy coefficients K̃ ′′
nn′ N (T ) are given by

K̃ ′′
440(T ) = −1

2
β

[
+4

√
4π

7
(B̃4)

2α440(T )

]

K̃ ′′
444(T ) = −1

2
β

[
+

√
4π

9

6
√

14√
11.13

(B̃4)
2α444(T )

]

K̃ ′′
446(T ) = −1

2
β

[
−

√
4π

13

4

7

√
65

11
(B̃4)

2α446(T )

]

K̃ ′′
448(T ) = −1

2
β

[
+

√
4π

17

3

7

√
5.11.17

26
(B̃4)

2α448(T )

]
.

(16)

Note that (i) the fourth-order crystal field terms (n = n′ = 4) can give rise to a magnetic
anisotropy term with rank N = 8 and (ii) the suffices nn′ N for the K̃ ′′

nn′ N (T ) and αnn′ N (T )

coefficients are the same.
Proceeding in this fashion, explanations have been provided for (i) the change in sign of K1

in HoFe2 and K2 in DyFe2, (ii) the origin of the K3 and (iii) the need for even higher-order terms
(Martin et al 2006). In particular, explicit expressions are given for phenomenological magnetic
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anisotropy constants K1–K5, in terms of the RE-ion crystal field parameters B4 and B6 and their
products B2

4 , B4 B6 and B2
6 . The latter dominate the higher-order K3–K5 parameters, with K3

and K4 being of the same order of magnitude as K1 and K2.
But, as noted earlier, there are important differences between the bulk and MBE-grown

REFe2 thin films. In MBE-grown films, there is a strain term (εxy), in addition to the usual
cubic crystal Hamiltonian HCF. So cross-terms of the form (b2εxy)

2, b2εxy B4, and b2εxy B6

will occur.

3. The magneto-elastic Hamiltonian

First, we establish a general operator form of the magneto-elastic Hamiltonian, which is usually
written in the form:

HME = b2εxxα
2
x + b2εyyα

2
y + b2εzzα

2
z + b2εxyαxαy + b2εxzαxαz + b2εyzαyαz . (17)

Using standard methods (Hutchings 1964, Abragam and Bleaney 1970) we obtain:

HME = Bxx J2
x + ByyJ2

y + BzzJ2
z + Bxy

1
2 (JxJy + JyJx) + Bxz

1
2 (JxJz + JzJx)

+ Byz
1
2 (JyJz + JzJy) (18)

where:

Bi j =
[

b2εi j

J (J + 1)

]
. (19)

However, in place of the spin operators Jα, we choose to use the tensor operators Tk
q . Thus

equation (18) is transformed to:

HME = Bxx

{
1
2

[
T2

2 + T2
−2

] − 1
2

[√
2
3 T2

0 − 2
3 J (J + 1)

]}

+ Byy

{
− 1

2

[
T2

2 + T2
−2

] + 1
2

[√
2
3 T2

0 − 2
3 J (J + 1)

]}

+ Bzz

{[√
2
3 T2

0 − 1
3 J (J + 1)

]}

− Bxy
i

2

[
T2

2 − T2
−2

] − Bxz
[
T2

1 − T2
−1

] + Bxz i
[
T2

1 + T2
−1

]
. (20)

In the [110] MBE films in question only the εxy term is important. So:

HME(εxy) = −Bxy
i

2

[
T2

2 − T2
−2

]
. (21)

We are now in a position to calculate the magnetic anisotropy parameters which involve
the strain term.

4. Magnetic anisotropy terms involving εxy

The first-order change to the free energy due to the magneto-elastic term is given by:

F ′ = 〈HME(εxy)〉 =
∑
n,m

B̃n
m Dn

0m(ω)〈Tn
0〉 = K̃ ′

2i[Y −2
2 (θ, φ) − Y 2

2 (θ, φ)] (22)

where:

K̃ ′
2 =

√
π

5
Bxy〈T2

0〉EX. (23)
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Note that the combination of spherical harmonics appearing in equation (22) is real:

i[Y −2
2 (θ, φ) − Y 2

2 (θ, φ)] = 1

2

√
15

2π
sin2 θ sin 2φ. (24)

In practice, K̃ ′
2 decreases monotonically with increasing temperature, in accord with

expectations based on the Callen and Callen model. However, as we shall see, this is not
necessarily the case for some of the second-order terms.

In second-order perturbation theory, beating occurs between HME(εxy) and the fourth-
and sixth-order cubic crystal field terms HCF of equation (5). This gives rise to additional
anisotropy terms, which do not possess cubic symmetry. There are three contributions,
discussed separately below.

First, there are terms proportional to B2
xy . These generate contributions to the free energy

with rank N = 0, 2 and 4:

F ′′(2, 2) = K̃ ′′
220(T )Y 0

0 (θ, φ) + K̃ ′′
222(T )Y 0

2 (θ, φ) + K̃ ′′
224(T )

×
[
Y 0

4 (θ, φ) −
√

35
2 (Y 4

4 (θ, φ) + Y −4
4 (θ, φ))

]
(25)

where:

K̃ ′′
220(T ) = −1

2
β

[
+

√
π

5
(Bxy)

2α220(T )

]

K̃ ′′
222(T ) = −1

2
β

[
+

√
2π

7
(Bxy)

2α222(T )

]

K̃ ′′
224(T ) = −1

2
β

[
+

√
π

70
(Bxy)

2α224(T )

]
.

(26)

Here the numbering on the K̃ ′′
nn′ N (T ) and αnn′ N (T ) coefficients refers to the rank of the strain

term (n = n′ = 2) which couples vectorially to give a final rank N = 0, 2, 4. Note that none of
the terms appearing in equation (25) has the same form as the spherical harmonics appearing
in first order (see equation (24)).

Secondly, there are cross-terms involving Bxy B̃4. These generate terms with rank N = 2, 4
and 6:

F ′′(2, 4) = K̃ ′′
242(T )i

[
Y −2

2 (θ, φ) − Y 2
2 (θ, φ)

] + K̃ ′′
244(T )i

[
Y −2

4 (θ, φ) − Y 2
4 (θ, φ)

]

+ K̃ ′′
246(T )i

{
[
Y −2

6 (θ, φ)) − Y 2
6 (θ, φ)

] + 3
√

55

13
i
[
Y −6

6 (θ, φ) − Y 6
6 (θ, φ)

]
}

(27)

where:

K̃ ′′
242(T ) = −1

2
β

[
−4

3

√
2π

7
Bxy B̃4α242(T )

]

K̃ ′′
244(T ) = −1

2
β

[
+4

√
3π

77
Bxy B̃4α244(T )

]

K̃ ′′
246(T ) = −1

2
β

[
+26

33

√
11π

14
Bxy B̃4α246(T )

]
.

(28)

Note that (i) in writing equation (27) care has been taken to include both the cross-terms Bxy B̃4

and B̃4 Bxy and (ii) the K̃ ′′
242(T ) term has the same functional form as the first-order term of

equation (22).
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Table 1. The RE ion parameters after (Martin et al 2006).

RE B4 (K/ion) B6 (K/ion) X (K/ion)

Tb +6.45 × 10−3 +8.73 × 10−6 150
Dy −3.02 × 10−3 −7.22 × 10−6 100
Ho −1.15 × 10−3 +8.03 × 10−6 75
Er +1.86 × 10−3 −1.13 × 10−6 60
Tm +6.33 × 10−3 +2.72 × 10−6 50

Table 2. Estimates of the magneto-elastic term b2 and Bxy at 0 K.

b2 (J m−3) b2 (K/ion) Bxy (K/ion)

Tb −6.41 × 108 −2.29 × 103 0.300
Dy −6.11 × 108 −2.17 × 103 0.187
Ho −2.33 × 108 −0.84 × 103 0.071
Er +2.19 × 108 +0.76 × 103 −0.066
Tm +5.39 × 108 +1.92 × 103 −0.242

Third, there are cross-terms involving Bxy B̃6, this time with rank N = 4, 6 and 8:

F ′′(2, 6) = K̃ ′′
264(T )i

[
Y −2

4 (θ, φ) − Y 2
4 (θ, φ)

]

+ K̃ ′′
266(T )

{
i
[
Y −2

6 (θ, φ) − Y 2
6 (θ, φ))

] − 1
5

√
11
5 i

[
Y −6

6 (θ, φ) − Y 6
6 (θ, φ))

]}

+ K̃ ′′
268(T )

{
i
[
Y −2

8 (θ, φ) − Y 2
8 (θ, φ))

] − 1
3

√
1001

15 i
[
Y −6

8 (θ, φ) − Y 6
8 (θ, φ)

]}

(29)

where:

K̃ ′′
264(T ) = −1

2
β

[
+16

√
3π

143
Bxy B̃6α264(T )

]

K̃ ′′
266(T ) = −1

2
β

[
+10

√
π

11
Bxy B̃6α266(T )

]

K̃ ′′
268(T ) = −1

2
β

[
+3

√
3π

26
Bxy B̃6α268(T )

]
.

(30)

Note the appearance of the rank 8 spherical harmonics Y ±2
8 (θ, φ) and Y ±6

8 (θ, φ). These possess
the same rank as the K̃8 terms of Martin et al (2006), but not the same functional form.

To make further progress, estimates are required for Bxy , B4 and B6, for the five heavy
REs in question.

5. Calculations

Values of the crystal field parameters B4 and B6 and the RE–Fe magnetic exchange field
parameter X have been given by Martin et al (2006), and references contained therein. For
convenience, these are reproduced in table 1.

Estimates for the magneto-elastic term b2 for MBE-grown TbFe2, DyFe2 and ErFe2 have
been given by Mougin et al (2000). However, in table 2 we list the parameters used in this
work. These were obtained using table 15.2 of Clark (1979), together with a value of the elastic
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TbFe2E(K/ion)

T/TC

K2
'

K222
"

K242
"

K244
"

K246
"

K264
"

10-1

100

101

-10-1

0.2 0.4 0.6

Figure 1. Anisotropy parameters for TbFe2 which involve the shear term b2εxy . The curves are
labelled individually, but for colour on-line the black curve is first order, while the curves in purple,
blue and red originate from B2

xy , Bxy B̃4 and Bxy B̃6, respectively. Curves not shown have been
suppressed either for clarity or because they are small. Following Atzmony and Dariel (1976),
anisotropy values between −10−2 and +10+2 (K/ion) have been set equal to zero (thick line).

DyFe2E(K/ion)

T/TC

K2
'

K222
"

K242
"

K244
"

K246
"

K264
"

K268
"

10-1

100

101

-10-1

-100

0.2 0.4 0.6

Figure 2. Anisotropy parameters for DyFe2 which involve the shear term b2εxy.. Comments as per
figure 1.

constant C44 = 4.86 × 1010 J m−3 derived from ultrasonic experiments on bulk Tb0.3Dy0.7Fe2

(Rinaldi et al 1977).
The calculated strain-related anisotropy parameters for DyFe2–TmFe2 can be seen in

figures 1–5, respectively. In preparing these logarithmic plots we have followed the system
adopted by Atzmony and Dariel (1976) in that values between −10−2 and +10+2 (K/ion) are
considered to be zero (the thick horizontal line in figures 1–5). Note that the sign of K̃ ′

2 in Er
and Tm is opposite to that in Tb, Dy and Ho, in accord with the sign of the magneto-elastic
term Bxy of table 2.

The estimates shown in figures 1–5 can now be used, in conjunction with the cubic
multipolar constants K̃N (N = 4–12) of Martin et al (2006), as a starting point for the magnetic
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Figure 3. Anisotropy parameters for HoFe2 which involve the shear term b2εxy . Comments as per
figure 1.
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Figure 4. Anisotropy parameters for ErFe2 which involve the shear term b2εxy . Comments as per
figure 1.

modelling of epitaxial thin films. In general, the largest second-order terms are K̃ ′′
242(T ) and

K̃ ′′
264(T ), which are of similar magnitude. At high temperatures, for say T/TC > 0.2, K̃ ′′

242(T )

dominates. As noted earlier, this term has the same angular dependence as the first-order term
K̃ ′

2, but its temperature dependence is more rapid. At lower temperatures, the K̃ ′′
264(T ) term

becomes important. Thus we write:

FA = F ′ + F ′′ ≈
(

K̃ ′
2 + K̃ ′′

242(T )
)

i
[
Y −2

2 (θ, φ) − Y 2
2 (θ, φ)

]

+ K̃ ′′
264(T )i

[
Y −2

4 (θ, φ) − Y 2
4 (θ, φ)

]

= K̃2eff(T )
1

2

√
15

2π
sin2 θ sin 2φ + K̃ ′′

264(T )
3

4

√
5

2π
(7 cos2 θ − 1) sin2 θ sin 2φ.

(31)
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Figure 5. Anisotropy parameters for TmFe2 which involve the shear term b2εxy . Comments as per
figure 1.

The correction at T = 0 K to K̃ ′
2 arising from K̃ ′′

242(T ) amounts to +9.2%,−13.9%,
−11.6%,+14.3% and +27.1%, for TbFe2, DyFe2, HoFe2, ErFe2 and TmFe2, respectively.
The percentage value of the K̃ ′′

264(T ) term relative to K̃ ′
2 is −1.3%,+6.7%,−14.8%,+17.5%

and −12%, respectively. Clearly the first-order term is dominant but the second-order terms
can give rise to changes of up to ∼25%.

6. Conclusions and discussion

In summary, of the nine second-order terms which involve the strain εxy , only the K̃ ′′
242(T ) and

K̃ ′′
264(T ) terms are important. The former arises from the cross-term Bxy B̃4 and possesses the

same angular form of the principal first-order contribution K̃ ′
2. The second term, proportional to

Bxy B̃6, has a relatively fast temperature dependence and is only important at low temperatures.
However, some words of caution are in order. One, the strain term εxy is itself temperature

dependent (see figure 2 of Mougin et al 2000), decreasing by ∼25% on reaching room
temperature. This will give a more rapid temperature dependence than that shown in figures 1–
5. However, this effect can be readily taken into account, since all the data shown in figures 1–
5 are linearly proportional to εxy . Two, it has been assumed that the elastic constant C44 is
independent of both RE and temperature. Clearly more measurements will be required to shed
light on these two features. Three, any distortions of the lattice should give rise to changes in
the fourth- and sixth-order coefficients B̃4 and B̃6. In this regard, we note that the point charge
model has been used to show that these two coefficients hardly change for shear distortions
(Bowden et al 2004, section 4). Thus we conclude, tentatively, that all the principal terms,
linearly proportional to εxy , have been included. However, a more sophisticated calculation of
the coefficients B̃4 and B̃6, based say on a density-functional approach (e.g. Richter et al 1992),
may well be in order.

Finally, given that the cross-terms involving strain do not amount to more than 25% or so,
we believe that it is reasonable to assume, as a first approximation, that the dominant anisotropy
terms in MBE-grown REFe2 thin films are the cubic anisotropy terms K̃4 − K̃10 (figures 1–5 of
Martin et al 2006) and the first-order strain terms K̃ ′

2 (figures 1–5 of this paper).
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